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Abstract

In this paper we develop local _md globa_ estimates for the s()]ution of

convection-diffusion problems. We then study the convergence proper¢ies of
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domains using incompatible discretizations. This study is based on a De-
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'This work ha.s been supported by the Hermes Re.arch program under grant numbex

RDAN 86.1/3. Tile author wa_ also supported by the N_tional A_ron_utics and Space Ad-
miniltrativn under NASA contract NAS1-19480 while he was in reJi4cnae at the Institute

for Computer Applications in Science and Engineering.



1 Introduction

Domain decomposition methods have recently become an efficient strategy

for solving large scale problems on parallelcomputers ([1], [2], [3], [4], [5],

[6]). Nevertheless, they car also be used in order to couple different models

[11], [18]. In this paper we will examine a domain decomposition strategy
which can be applied to such situat.ioas.

This approach was introduced in order to solve several difficulties that
occur in fluid mechanics. In particular, our aim is to introduce several sub--

dom_fins in order to do one of the following :

• Solve different problems on each subdom_in.

• Use different kJnd.s of approximation methods on each subdomain [7].

• Use "local refinement techniques" or "mesh adaptive techniques", lo-

cally, per subdomaln ([]0]).

The subdomains fully overlap and the coupling is achieved through "fric-

tion" forces acting on the internal boundary of the domain, these friction

forces b_ing updated by an expBcit time marching algorithm.

Several versio:ns of this methodology have been stu¢lied in [15]. In [15] the

emphasiz was on the implicit time discretization version of this _lgorithm,

we focus in this paper o_ the _plicit version of this methodology. The
theoretical study of our method will be done on an Advection-Diffusion

problem, which will serve as our model problem. The analysis will be made

at the continuous level, independently of any (sp_e) discretizatJon strategy,

which means that the derived resrdts will be mesh independent.
Iu the next section we develop a maximum principle for generM second-

order elliptic problem based on the De-Giorgi-Nash theory. In section 2 and

3, we develop estimates for the solution of the convectlon-diffusion problems

respectively wi_h Dired_let-Neumann and Direchlet boundary conditions.
These results are based on the ma.ximum principle of section 2. We then

apply these tools to the analysi', of an ¢_phcit time marching algorithm. We

also study _ fixed point method for the irnplidt time marching algorithm of
[15]. Practical applk_tions of the time marclfing algorithm to real life CFD

problems can be found in [14], [19], [20], and [21].



2 Local estimates

In this section we shall establish a maximum principle for an arbitrary elliptic
operator of second order. These tools are central to the deve]opment of

our theory in order to derive the convergence analysis of the explicit time
marching algorithm described in section (5.1).

Let L be an operator written under the form

for any u :in W_'n(_l), with fl <ubounded domain of JR.n. The coefficients

a_J,b _ and c,i,j = ].,...,n are defined on fl. As usual, the repeated indices
indicate a summation from 1 to u.

We suppose that the operator L is strictly elliptic in fl in the sense that

the matrix Jl of coefficients [ai/] is strictly positive everywhere in 12. Let

and A denote respectively the sraalle_t and the largest dgenvMue of .A. Let
1_ denote the determinant of the matrix A and D* = :DI/'L We have

0<,X_<_" <A.

We suppose in addition that the coefficients a_i, bi and c are bounded in 12,
and tha_ there exfists two positive real numbers "l' a,nd _7such that :

h/,_ _< 7, (L is uniformly elliptic) (1)

(Ibl/"t) 2 -< (2)

Now, we are in a position to state, the pzlnclpal result of this section,
proved in anae_x.

Theorem 2.1 Let u _. _'_.'_(_) and suppose tha_ Lu _ f with f E Ln(l'l)
and c _ O. Then for all spheres B "--.B_R(y) of center y and radius 2R
included in 11 and for all p > O, we have :

suPaRi,lu <_CR{(}-_] /B(u+)P)llI_ + Ri[f[i_,B}, (3)

where the constant CR depends on (n,3', 6R2,p), but is independent of c.
Above u+ = maz(u,o).
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Remark 2.1 The statement of the same theorem can be found in [12], un-
der the assumption

Icl/J, _<,5. (,t)

So, there the constant Cl_ depends indirectly on c through _. That is
ezactly what we want to avoid, since we would like this constant to be inde-

pendeni of c (.see section 5.1).

3 First fundamental estimate

Let 121o_ be a connected domain of IRn with ftto_ C_;D (FiglJre 1). The
boundaries of the two subdomains sire defined as follows:

rb = Of_flOfttoc,( interned boundary)

Fi = Ofltoc C_fL (interfa.ce)

r_, = 0fl\rb. (fa_el.d boundary)

We denote by n the external unit normal vector to Oft or Ofl_o._.

. et V be a given velocity field of _n inviscid incompressible flow such that:

divV = 0 ila ft, (5)
V.n ---.0 on rb.

We shall derive an _mtim_te for the solution of the following Direchlet-
Neum.ann problem:

1
£v = -uAv -t V . Vv + -v in 12, (6)

v = 0 on too, (Z)
Ov
--- = a on r_, (8)8n

where the function 9 is given ha H--1/z(rb) and the coefi]cient r is strictly

positive, _nd u is the diffusion coefficient. Let W be the sub-spa.ce of Hl(f_)
defined by

w = {_ _ ts'(S_)l., = 0 <>nr_)

3
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We then definethe followingbilinearforms on W

#- t

<v, ], +]odiv(Vv)w, (i0)

= fn vw. (Ii)(v,_)

The firstbasic:problem associatedto(6)-(8),can be writtenasfollows:Find

v E I¥ satisfying:

_(v,w)+ (iI_)(_,_)= /rg_dr,vw e w, (12)

Moreover, we assurne theft the coefficients v _nd r satisfy the following
relation:

vr < I. 03)

This hypothesisisnot necessarybut simplifiesthe proofstocome. More-

over,itis_ot restrictive,sincewe would likethe convergencefor small r
(seesection5.I).

L*t d denotesthe overlappingdistance_ describedin the Figure2. Let
then /3 be a real number such that

o < Z < 3v_/d,
and set

k = z/(_v_).
The first basic result states the global H 1 estimate of the solution of the

first basi.c problem (12) in terms of the. boundary d_ta g.

Lemma 3.1 There ez_sts a constant co such _hat we have:

iivll_,. _ (_o/_')ll.qll-_/2,r_, (14)
Proof of lemma 3.1

By using the relation (5) we have the following equality:

ff vdiv(Vv) = 1/2#/0 div(Vv 2)

= 1/2fr V.nv 2

= O, VvEW.

[ " I II II Ill _ ........... : ...... Illltl .............. , ..................... . ........



Choosing w = v in (12),we th,m obtain

From thisequ_ditywe deduce the followingestknate;

vllv]]_,a <_ I[gl]_ltzr_llvlh/_,rb.

The a,pplica.tionofthe tracetheorem yieldsthe estimate(14),which implies

in pa)-tic_ar

ll ll0,n_< (16)

m

Let fllbe the snbdola_inofwidth _ with externalboundary ri as described

in the Figu:re2. Let K_ = B_(y) be the sphere ofcentery _nd radius_.

There exist Yl,-.-,Yr belonging to _ s_ch that

I
_q2i:=t-_e_B_ (y)C Wj-_IK_.

6

We define then.//" by setting

K = U_=._K_.

The next lemma states _he local estimate of the solution v of the first basic

problem (12).

Lemma 3.2 There exits a consSant ca such that:

Ilvll ,r< _<c,[MIo, . (w)

where cl is a con,:tant dept:nding only on u, 7, 6d2 and (3/2d) "_1_.

Proof of lemma 3.2

The operator

L = -/.:

satisfies the assumptions of the theorem 2,1, with c = -1It and f = 0.

Applying then this theorem with p = 2_ y E ft; we obtain



Therefore
Ilvil_,K_, < cl Ilvlio,l_,

where cl is a constant depending only on v, % 6d_ and (3/2d)"/2.

Applying the relation (18) to each K_ we obtain:

(_8)

Se_ting ca =- sup
j-_l,...,l

[[vlloo,K < sup cl_llvllo.n.
_=1,...,1

cxj, we finally have

IIVlI_.K <_c_llvllo,n- (10)

And the lemma is proved.

m
We shall now establish other local _timr._es for the solution v of the first

second basic problem. For any M; in _2i, we introduce (see Figure 2):

Be = the ball centered on M; of radius d/6,

. _,_= ¢zp[k(_-2 .- d_136)llivll_.,_B,.

We then have:

Lemma 3.3 The solution v of _,he first basic problem satisfies:

Iv(M/)] _<exp(--kd_ /36 )ilv[lo_,oB,, VMi e fli.

Proof of lemma $.3

(20)

The operator £ applied to _i, c_n be: written in polar coordinates (with
r = MJ4) :

k 1 v
Lv, - 4(-k_vr 2 - kv 4- _V.e,r + ._r ) _.

Therefore

We set then :

Lv_ :> 4(-k2vr 2 k (1_ _. kv))v_.._ - _'lV.e.lr ÷ 4r (21)

_(r,/¢) = a(k)_ _ + t,(k), + c(k), (22)
with

,_. i _ _ I II IIIIIIII I III II IIII I I Ill I i , ' "' ---' ' I L]II.......... ' ............ __ ::_



a(k) = -k:,,

k

b(k) = -71V.e_4

1
c(k) = -- - kv.4r

We seek to satisfy the following relation :

d

C _<inf _o(r, k) for 0 < r <_ g.

As 99(r,,k) deereaaes on N+, this will be satisfied iff

_(d16) _ o,

i.e. iff

k2_'d_ kdlWll, a
36 12 -r_r-kU>.O.

We replace k by its value. Therefore, we have to satisfy

fl:d_ Z_dllVll a _
+ > O.

(36u 0 12_,_ 4,- _,V_ -

Mlxltiplying by v _, it foliows that

?v_( 1 _d _ dllvll9v ) ->8(1 + -i-_-).

The con,;traint fl < 3v'_/d, finally yields after division

1 all.ill_ _d __ _ -' (23)_(,-,_:)> o i_ _ >__.aD.+ 12,," --_--1"

_om the relation (21) and the previous calculation, we deduce that for

fl < 3v_/d and r satisfying the above inequality, we have

Lv_ >_ 0 = Lv.



In a,-dition, by construction

vl _> v on OBi.

Consequently, by using the maximum princSple we obtain the following re-
lation :

z,<vi in Bi°

In p_rticu]_r

v(M_) < e=p(-kd2/a6)llvlloo,aB,.

We do the same for -v, and finally we have

Iv(.e_)l _<exv(-kd:/36)llvll,,_,oB,, VM, e _. (24)

[]
Let Ooo be defined b7 12_ = _ \ _2toc. The next result estnblishes sn H 1

estimate of the solution v of the first basic problem on the domain _oo.

[,emma 3.4 There e_rists a constant c2 such that:

II ll,oo +-_-v"/ 2)
I

Proof of lemma 8.4

(25)

Let f E Ha(f/) be such that :

{
We have using (12):

j_ (.-u/_v + div(Vv) + vlr)_v = O.

By using the Gre_m's fozmu]a we deduce :

(2S)

fn-,'z.e=_= f .lv(&)l=-fn.lV_.l%= (27)

8
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On the other hand, we have :

_ div(Vv)(_v= L div(V_'_v_/2)- L V.V_v_.

Using the rela,tions (27) a_d (28), (26) becomes

(28)

-- /_,(vlV(_.o)ff+ _v(V_V2) + _2_2/T)--J(._IV_,I _+ _:_V.V_)

= /._ _'(IW>l_+ I_l:)i- !_,_'(IV(f_')12t10'12)+i. (_1_"-")f:v2

_/,, (,,_,2iV_l_+ ,,:_v.v_).

tience, we obtain :

_'llvll'2'_:<'+ L, "(!v(4!v)l: + I'f_12)+ .,_(al_-- _,)f2_,2=

The relation (13)then yields

L, (_,,?lVfl_-t-v_O."•v_).

< f_,(_v21Vfl _+ v:fy._'() (29)

< 2 /.I1,,11<,>.,,(,,IVfl_ + fv.,,Tf) (3o)
i

_< _. 2II_'lloo,n,(vlfh,r_,+ Ilfll,,,r_,IlV'lllfl_.r_,)

II_'lloo,r_,147h,r_,(v+ Ilfllos_,llVlltlfl;,_,). (31)

lifllo,_,< _,

_'llf_lli,_u_,

Ifwe t_ke_ such that
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I,_l_,r,,= _2/e,

where c2 is a co_st_nt, (31) then becomes

,_,,._=_<H_.o,v/_ (1 ,v, _ 7 '/'+--c-#0 ,
which is the conclusion of our lemma.

I
Now we are i.u a position to state {he main result of this section.

Theorem 3.1 ]_et v be the solution of the first basic j','oblem (12). If r is
sufficiently small, we have

1 t---.m_ 112
II_ll,/,,r, _< c.,_ (, +-_llYil_>q_!c=)

t 1/u)e_.p(-- kd /36)llgll__/2.r_,

where C1 and 6_ are constants, with C1 depending only on d, u, _1 and _, but
not ofl T,

Proof of Cheore.r_ 8.1

The proof of this _heorem is based on the above ]emmas. Since O_i C K,
We have

I1,,11_>._,_ II,,ll<:>a<,

The ]emma, 3,2 then implies

Ilvll_,a,_, < q ll"llo,a-

Using tl, e lemma 3.3 and the above estimate we obtain:

iv(M01 _<ezp(-kd2136)cl Ilvllo,_,VM, e a_.

Consequently we have

I1"11,=,,.,_<etp(-_.d 136)c,II'-'llo,a.

(33)

(34)

(35)

I0



Applying the lemma, 3.1 we obtain:

[[v[[oo,_, _< clC°ezp(-kd_/36)llgll_.l/2,r_.
V

The application of the lemma 3.4 then yields:

(36)

(Uu)ezP(-kd2 /36 )llgli-a /2,r_.

To conc].ucle we use the trace theorem which yields

[Ivlh/2.r,_<_3[Ivil,,,_.

Consequently, we have the final estima.te:

(37)

l_[vll ,----
II_ll,/_,r, -< _o_,_V/_-_(I+ -E'Vd,'_)'Z2

O/ ,"),_P(-k dV3e)llgll- _/_,r, ,

which corresponds to our theorem with O1 = coclc3 and C2 = c2.

m

4 Seconcl fu:zdamen+,:al estimate

In this section we shall derive an e_stimate of the solution of the following

Direchlet problem:

1
£v = -vhv+V-Vv+-v in _loc, (38)

T

v --- h, on ri, (39)

v =: O, on IPb, (40)

where the fimetion h is given in//'1/2(r_), the coefficient .r is strictly positive,

and v is the diffusion coefficiertt. The velocity field V is given by the relation

(5). Let W be the sub-s'pace of H_(f_toc) defined by

11
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rl

Figure I: Description of the Domain ._1o¢ emd of tbe splitting used in the
m,_joration of the loca,l solation.

12
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w = {_ E H_(_o_)l _ :: o o_ rb}.

We then define _he folJowing bili_eaz forms in W:

w)- v/_ vvw +/_ div(v ) , (41)
Jll lo<: Jlllo_

(v,w) :- _ v_, (42)

with v :rod w in W. The second basic problem associated to (38)-(40)
corresponds to the following problem:
Find v E W such that

_(v,_,) + (ll.)(v,_) = ,_-_,, v_ e w. (4a)
i

vlr, = a, (44)

where h is given in H1/2(FI). We first have the IoUowing lemm_ ;

Lemma 4.1 For r _mfficiently small, we have

_(.,, +.)+ (_l_-)(w,,_;)>_(_'/2)ll,,,ll_,r_,oo,vw e l.i:

Proof of !emma 4.1:

Under the hypothesis lit > v/2 4- (1/2v)iiVil _, and using the Caalchy-
Schwarz inequality, we obtain :

_(.._)+ (l/.)(o,_) = _,.< vW.Vv + _,0+ v.v,,, + (1/,) _,°< v_

-_'2vllVvll_.2+ (llr)llvll_,2 -IIVll_oilVvllo,_llvllo,'_

_> vllW,llo22+ (l/T)llvllo22- (v/2)llW>llo2,2

-(l/2v)llVllLIMI2o,2

_> (,.,12)(11'c',,11_,2+ II,dlo22).

13
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Ii
We will also make the simplifying aasumption (13). We first _tablish a

global estimaf, e for the soiution of the second basic problem.

Lemma 4.2 The solution v of the second basic problem (,_3)-(_$) satisfies:

I1,,11,,.,o.< 2(1+ _.-_)_/2(1 + 1+ IIVIIL'_- 7 ) Ilhlh/2,r, (45)

Proof of iemma 4.2:

Choosing v_ = v in (43) we obtain :

ufn,o Wvt2 + £,o (_v(Vv)v+(1/,.)v2)= fr ' Ov_h. (46)

The lemma. 4.1 then yMds

Ilvll_.n,_._<;211Ov/ anll__/2,r,Ilhlh/2,r,. (47)

We shall, now establish aa estimate of i]&,/On[l-_'._.r,. Combining (43) and
(5) we obta.in:

fr °_' f_ (v.v.,,, + (V.)v.v_w + Z.w).i _._9 "-" lto¢ /]7"

Therefore, for any w in W, we have

-< IlVvllo,n,..llV_llo.a,..+ (1/-)llVllo.llV.lto.,,..li_llo.n,o.

+_; IIvIIo._,ooINIIo.n,_

_< (llvvllg,n,.. + (1/v2)liVIl_llVvllg.a,..+ (Uv2)llvllg,a,..)_/_

(llV_llg,a,_.+ [l_ollg,_,,.--0/r_)ll_ollg.a...)1/2

< [1+( 1+ IIV_./_ ,,ll1n rl- 2,_ ' ' . '_" + r-_)al_llwlll.a,,,,'

14
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The trace theorem then yields

IlO_IOnll-m,r,< (I--__-_)_/2(I+ II_lh,_.

(48)

Combining now the rel_L_ions (47) and (48) we have

II_ll_,a,:<_.<_(I+ _-=)_n(1+ I+ _2!I-VIIL]

and hence in particular

1/2

Ilhll_p.,r, (49)

iI_,tlo,a,°,< 2(1+ r-2)1/2 0 + 1 + IIVIIL) 1/2v2 llhlh/2,r..(5o)

Ii

Let Ku = BgI4(y) be the sphere centered on It _nd of radius d/4, with It
belonging to I'v (see Figure 3). By construction, Fv is the center surface of

ftt._ and f_; is the subdomain of width _ centered on Fv •
We have the foUowing lemma:

Lemma 4.3 ".There exists a con_:tant cl such that:

Ilvll_,,_"_ clllvllo.n,_. (51)

Proof of lemma 4.3:

_bl]owing the same a.rgument as in the proof of the lemma "i,2 we obtain:

Ilvll_,_, .<._llvllo._,,,, (52)

where cl is a constant depending only on d, u, 7 a_d ti. Or, the other hand

there exist Yl, .... Yt "m _i such that

l

= U c U = K.
y6f'l, j_l

By applying the relation (52) to each Kv_, we obtain

15



.. rv

K .'°"

/--.--.__.._A._ ..-"" _
.°. \ ri

1;

Figuxe 2: Description of the local domain D.to_ and of the splitting _sed in
the majora,tion of the global solution.

Ilvll_,t<__ s_p clAl_llo,_,_ - c_[l_llo,n|_. (53)
j= l,...,l

II
Next we shallestablishanother],oc,_lestimateforthe solutionof the second

basic problem (43)-(44). For any Mi E t2_, we introduce (see Figure 3):

• a 1)aLl Bi centered on Mi and of rax]Jus d/6,

• the function vi = ezp[k(r 2 - d2/36)]llv[Ioo,_1_,.

We then ha,ve:

Lemma 4.4 The' solution v of the second bo.sic problem (_8,)-(_4) satisfies:

Iv(Mi)[ < ezv[-kd2/3a]llvlloo.aB,. (54)

Proof of lemma (4.4):

By construction of k (see the previous section), _(r,k) is positive for all
r _ [O,d/6]. Then by following the same argument as in the proof of the
lemma 3.3 we obtain the/ztequality (54).

I6
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I

Let _b be _he subdomaia of _lo_ described in the Figure 3. The B "1 globs_

estimate of the solution of the second basic problem, is obtained in the next
lehman.

Lenlma 4.5 The solu_:ion v of the second basic problem (13)-(4.¢) satisfies:

r----'_ 1/_
tl_,'!i,,,_,.,,,,_ II,.,ll<,<,.,,,v/7"_"_(' + ll_i"_l'--'-_.v/<Zl,:=)• 15_)

Proof of iemma (4.5):

Consider _ E Hl(f_t,,_), such that:

{_ = 1 in ftb, (56)
._npp_ C f_b U f/i

Choosing w = _Uv in (43) we obtain :

f_ (-rAy + divfVv).+ (W'r))_:/v = O. (,sT)
loe

Similarly to the proof of the temma 3.4 _,e obt;edaa:

Choosilag _ such that

ll_ll0,o,_ 1

and

Ifll,., - c_/d,

we finally obtain as in the proof of the lemma 3.4 _he inequality (55).
M

F.ina21y, the main reset of _b]s section is presented in the following the-
orem:

Theorem 4.1 For or su_ciently small, ghe .gol_,_tioriv of _he problem (42?)-

17
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Ila,,ta_ll-,/2,r, < c_ (1 + 1+ WIIL'_- )

(1 + U_'2)ezp(--kaa/_e,)llhlh/2,r,, (58)

where C1 and C._ are constants with Cx dependir_3 ordy on d, v, u and 6.

Proof of theorem 4,1:

Since OBi C K by construction, the lemmas 4.3 and a.4 imply:

ll_lloo,.. _ e_p(-kd2/Z6)cxllvllo..,o.. (59)

Purthermore by using the lernm_ 4.2 J.t follows:

[Iv'l°°'"' < f_ (1 + 1--'+_) 1/2 (60)

ca(1 + a/_z)_/%zp(-kd_/a6)llZlJ. ,_,r,.
By using the [emma, 4.5 we then obtain:

II,,lla.o._., _ ()<e J + 2-'+-I1___

1/2

(1 + l/_-_)_/%xp(-kd_/36)llhlh/zr,.

Before concluding we shall establish an estimate of the term

IlOv/_nll__12,r,,.

Choosing w sttch that:

w E/irl(c//oc), with w = 0 on Of/b r_ 012_,

and using (43) we obtain:

18
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_ (-vAv + div(Vv) + vlr)w = O.
b

Applying the Green's formula and using (5), we obtain:

jr o,, jo
b _ W :-" b VT

Similarly to tile proof of the lemma 4.2 we obtain the foUowin g h_equality:

1/2

llOv/anll_,/:.r_ < (1 + 1/..:),/2 "tl + 1+ !I_VIIL"I_ ,,,_ ) II,,ll,,r,_. (62)

The completion of tile proof of the theorem restdts from the combination of

the relation (61) with (62).
m

5 Convergence analysis of the explicit time march-

ing algorithm

Consider the following eJJiptic prob]em:

¢-+V.V¢ vA¢ = 0 infZ,

T

¢ = ¢oo on roo, (63)

¢ = 0 on I'b,

that we would like to solve by the fundamental algorithm of [15]. This

Mgorithm can be written in this case as

• se_¢70, =: ¢o_and ¢° = ¢o.

• then, for n >_ 0,¢;_ c _nd ¢" being known,

solve

"4n4"1 - _--n,-I-I , A,4,n+l

2".l_f._4" V.VcPloc - "_Wto_ = 0 in _loc,
1"

l_e = On Ft,

,,Ln+l_qoc = 0 on Fb,

(64)

i9



---- + V.V¢ "_+1 _ vA¢,,+I
7"

= OinQ,

¢"+1 = ¢co on P¢o,

u_ Fb-u_ = on
Or_ On

(65)

We shall show in this section that thi,; algorithm converges, and the

converged solution corresponds to the solution of the initial problem (63).
More precisely we have the following theorem.

Theorem 5.1 For r eufficiently small, ¢ being the' solution of the stationa_.y
problem (6S), we have :

i) -_l_- _ ,:o-,,erge_to 0¢

ii) ¢,_+1 converges to ¢ in H1/_(F_),

iJi) ¢n+1 converges to ¢ in tt1(_),

iv) _to_'_"+lconverges to ¢ in Hl(ft_o¢).

Proof of theorem 5.1:

By rite transformation ¢,,+1 _ ¢,_+t_ ¢ with ¢ the solution of the stationary

problem, tiffs problem c_n be reduced to the; case ¢oo = 0. Mifltiplying the
equation in (64) by w E W, integrating by parts, we obtain:

/. -'+'_t.p.._ W + n+l VA,_-1 ,-,V.VeIo c w + u Vqoc vw
I_a T Ioc IoN:

i

We now apply the theorem 4.1 and we obtain

(66)

(67)

2O



1 4- -1IIVIl_
V

(1 + Ib'2)e_p(-kd_f36)l14'%12,r..

Oil the other hand, multiplying the equ_tio_ ha (65) by w E W and irate-

grating by parts we obtain the eqaia.lity

v'm°c (68)-----w 4. V.V¢"+lw .+ v V¢_+IVw = v --_w. n _ On

with w E HI(II) and w = 0 on Poo. Applying the theo._em 3,1 to this

problem yMds:

ezP(- Scd;/ 36)ll_¢_',ff/ Onll-l /2x,,.

Combinig (67) and (69), we then ha.ve:

(69)

""+' tlvtiL))II0¢,o, /Onll-tlz.r_ <_ c_ d_d;/_l + _g +

;nvii_dai_,)

()(1 + 1/r2)ezp -ki-g IIO¢)L/Or)ll-am-.,

with k = _v_" Therefore for r suffi¢fiently small, the coefficient of reduction

will be dominated by the exponential term and will then be strictly less
than 1, implying the linear convergence to zero of

110#_ lOnll-a12,r_.

2i
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This corresponds exactly to the statement (i). Tiffs statement combined

with (69) leads tc _,he convergence of $"+_ to 0 in/1I/2(ri). Applying (14)
with g = "rio, , "°, w_ have in addition

Ca n+l

[I¢ _+_ lh,n -< T I[O¢i°_ /_'_]]-x/2'r*'

and therefore He '_+x lll,n converges to zero at the speed of H0¢_+ x/an]]_l/2,r,.
Applying now (45) with h = ¢_, we also have

_+, ( )I/2II¢zo .<.2(1 + i/ 2) 1+ .+ IIV!l ) 11¢"111/2.r,.

.And then [l¢ n+llll,o also converges to zero at the speed of It¢"lh/2,r,.
m

5.1 Convergence of a fixed point method for the implicit
time marching algorithm

The implicit time m_rcking algorithm of [15] couples the global _nd the locaJ

problem. To uncouple them, it is advisable to use the fixed point algorithm
below :

• se_; _oc,O = _/'ozand _o = _bo,

• then for k > 0, ¢_v: being known,

solve

.Ln+1 = ¢_+1vdiOe,k+ 1 Oil _i_

An+l = 0 on rb,Wloc,k+l

(70)

,,t,n-t-! -- _n

cliv(v¢_+1) - 0 in _,A_ + -- VD,_pk+ 1 --

_n+l
Wk+l ----"¢oo on Foo,

a_n-+l/On

22
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We will study now the algorithm (70)-(71). By setting

_)loc,k,q

_)k,q

An+l _n+l
W[oe,k+ 1 _ w|oe,q+ 1

==(¢_+_-¢_+_),

we hr_ve that Ctoc,k,q and ¢_,q verify the following equations :

(72)

(73)

{ ¢to_,k,q/At-_rdiv(v¢_oc,k,q)--PACtoc,_,q = 0 in _o_,
_)loc,k,g =: _k-.1,q--1 on ri,

Cto_,_,_ = 0 on Fb,

(74)

42k,q/At +div(v¢_,q)- vA¢_,_ = 0 in _,

g'k,q = 0 on r_,

._0¢_____= vO¢1oo,_.____,_
On On on F&.

(75)

If At is sufficiently small, we c._n apply the analysis of the previous

section to this algorithm and we conclude tha_ Ck,q and Y)loc :_,q cony. rge

linearly to zero. !tence the sequences ¢_+1 _nd ¢_+1loc,k are Cauchy sequeuces,

which converge linearly to the unique solutions ¢.+i and A,_+I of the impficitWtoc
scheme. This guarantees the convergence of the above fixed point algorittma.

23
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Appendix

The main result of this section relies on the notion of a contact _et. If u

is a continuous arbitrary function on fl, the upper contact set, denoted r +
or r + , is tile .,rob-set of 1"_,defined by

r ÷ = {_ e s_.:_.p(y)e _sac_ tha_ u(z) <..u(_) + p. (x - y) W e a }.
(76)

We _;ee that u is a concave function on _l if/r + = _2. When u E C 1(_)

we must have p = Du(y) in the relation (76). In addition, when u E C_(_2),
the Hessian matrix D_u = [Diju] is negative on r + . ba general_ r + is closed
in _2.

If u is a continuous azbitrary function on _2_ we define the _norma]

mapping" X(Y) = X,, (Y} at poin_ y C _ by

x(_) = {p E m_, _(_) < _(_) + y.(_ - y) v_ e a}. (77)

We can .see that )¢(y) is non empty iff y ¢_r +. In addition when _ E CZ(f/),
we have X(Y) := Du(y) on F+; in other word,; X is tb_ /adient field of u on
F + .

As a particular ca_e of the Bakelman-Alexandro-¢ ([8] and [9]) maximum
principle, we have under the above uotation.

Lemma .1 For u E C2(fl) fl C°(fl), we have :

d ¢j
supu < sup_f_t + Ila D_u/D'll,_.r,

with el the diameter of _2 and w,_ the volume oJ a unit sphere in R *_.

For fl_rther dei_ils see [12].

We now proceed to the proof of Theorem 6.1, by following _he steps of
I12]. We take z3 = B1 (0) and the general c_me will be deduced by considering
the coordinate transform, _¢_ _ = (_ -- y)/2R.

We will begin, irt first step, by showing this result for u _ C_(_)

W2'_(_) and then in a second step we will deduce the result for u 6 W_"(_).
Step 1:

26



We suppose that u _ C_(12) n W_,'_(_). For/_ > 1, we consider the ct,"

off function r] defined by

v(_) = (1 .-I_1_)_.

By differentiation, we obtain

b,_= -2_(. -1_12)'_-_,

b_j_ = -2Z,_j(1 -- I_1_)_-_ + 4/_(Z - 1)_j(! - 1:_12)_'-2.

By setting

we then obtain

h '3D G v

V = rt.U:

= rla_J[giju + 2aqbolbju + uftGfgiiT?

Let r + =-- F_e be the upper contact set v, in the sphere 1} ; we have :

u > 0 on r +.

If z 6 vg_ such that p.(_ - y) < 0 we indeed have v(x) = O. Consequently

v(y) + v.(_ -- _) > _(_) = o.

Moreover, using the concavity of v on F +, we can estimate the followkng

quantity :

Ib_l = (iin)lbv - _b,_l.

Indeed,

-<I'/',)<l'>"l+ la',l)
'lJ

_< (_l,_)(-i---:-_l_l+ _,ib,_l)

< 2(_ +/_),V_/;_.

ht tha." way, we have on F 4 the following inequaJity :

27



-_':_b,j_ _< {(16_: + 2_/7);x_-:/_+

2/71i,lv-_/_ + _)v + _l}l-

Since _ _< O, we deduce the inequMity

-_J/)_ < {(x6/72 + 2_)A,9/_ + (78)

_nli>l,;-'i'_},, + ,7ILl

< q:,,7-wjv + I]1,

with c 1 = c(n, _7,7, _) independent of _.

Consequently, by applying Lemma 6.1 on B: we obtain, for/7 _> 2 :

_Tp" < (_)(_:)ilc, _,,_-:/°,, + I] II..D-
B 'i'7,tlJrl, t.,,-

By u,,fing the relation (2), it comes

supv < (_g_)c:fll_ 2/%11,,Ai g 1 -
- ,_,,,, + (-_--_-w_/-cr,)(_)llfll,_,z

-< qJ(ll_-2/%ll,,:_ + (1/3,)11711,,,_)

-< c_gi'll,_-_/'%+ll,,.D+ (1/$,)11711,,._)

< c_g((s_,p_,+)_-2inll(_+)2i_tl,,,e+ (l/J,)ll]ll..z),

where ci is _ constlint depending only on n,fJ,7 _nd $.
diameter of t}(d =: 2).

By using the Yming inequality lmder the form

Here, d is the

a]# _ ga q + _-r/qbr

for q := (1 -- 2//7) "l and r :=/7/2, we have

_i.-_/_i,,+_i/Pl_I_(_"PV+)'-_l_ll(_+)_t_ll,,._ < f._p_+ + - ,. , , _,_, w, > 0.

I
By taking e = --- and plugging in our inequality on v, we obtain :

2cld
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supv _< Ol2)sup_, + +(U2)a-_i2(qd)'_/;ll(u+)2/_ll_/_ (79)

+(c_d/i)ll]ll_._.

We want to prove the theorem for all p > O.

the cases p _<n and p > n.

If p _ n, we set _ = 2nip. In this case wc have

I (_,+_z/0e_Zl2= Iliu+)llp,_.
-- ] IIn,J_

Plugging this in our inequality on v, we obtain :

We will treat separately

(112) sup v _ ( l l2)_-_/;(c_d)Dl_ll(_+ )ll_._ + (e_dlS,)ll]ll,,.._.

Consequently, we obtain the following inequality ;

s_pv _<c2{(f_(,_+)") '/_ + (d/_J)ll]ll,,,_}.
/}

On the sphere B]./_(O), the cllt off function satisfies

1/, < (1/2) °.

It follows, then

_up u _< sup (v/_)
B_/2(n) Bl t_(o)

Final]y we end up at the desired estlm_te

,,p _ < c_{(f_(_ +)p)_/p+ (dl2i)ll]ll,,._}.
B_/_(o)

for u in W_'_(fi)nC2(fi). The const,-nt es above depend only on n,3, "r _nd

5, but is indepo.ndent of _.
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On the other haDd if p > n, we have :

2n/# < p, V'3E"2.

Then, itfollows(by assuming # > 2)

IBI -_/(2"/_)II(,_+)II_./_,_ <_lbl-'/"llu+ll_,m.
But

lit +;2t_lt_/_II"+lh"/_ = ""_" ",,m'

and therelbre, by processing as before, we obtain the desired estimate

sup _ _<c4{(/_(,_+),')'/,' + (,i/2i)11]11,,_)
B_/" (0)

for u in W2m(_2) n C_(_). The constant c4 abow; depends tufty on ,m,/9, 7
and ,5, but is independent of _.

Transformation _ --, z.

By construction, /_,3 = R-2Dij, thus ._ --= R-_A and _ = 6R 2.

addition, we have 1_3 -- w.t2R_" and _l .", ,- ", _ ,_',pB = R-"n'lgip.s.
Written. in term of z, the last inequality becomes

r- 2"w. t (2w_/"R
_up u < c,_(T/_FJs(u+),dx)'/,+. _ )II:II_.B}.B_)

In

with c4 a function of n, 7, _ = '_-R_ and p. This is the desired estimate for

u e w_'"(_) n c"(fi).
Step 2:

Now, let u E W2'a(ft). By density,let (urn) be a sequence of functions

of C2(J_), converging towards u in W2'"(B). The injection of W_m(B) in

C°(B) b continuous, consequently (urn) converges uniformly towards u in
B. We b.av_.

Lu_ -- L(u,.-_)+Lu

> / + L(u_, - u).

3O



By setting, f,_ = L(u,_ - u), we observe by construction that f,,., con-

verges towards 0 in L"(_2). As u_ E W2"_(f/) O C2(f/) a_d ],_. = f + f,_ is

in L_(f_), the estimate (3) is valid also for urn, so that we have

s.p _ _<ae{(r_joj (_)")'/_ 4--_]1]11_._}. (80)
BR(_)

Using prevlou.,; results _nd t_kJng the limit, we have :

s_)suPu _<a_{f I_I_1 J_[(u+),)_/, + 71i:ll_,B}.R.

Ii

Obsevve also that by replacing u by -u, the theorem, can be extended

easily to the ca._e cf _upersolntions and soi.utioas of the equ_tio_ :

L_-- f.
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